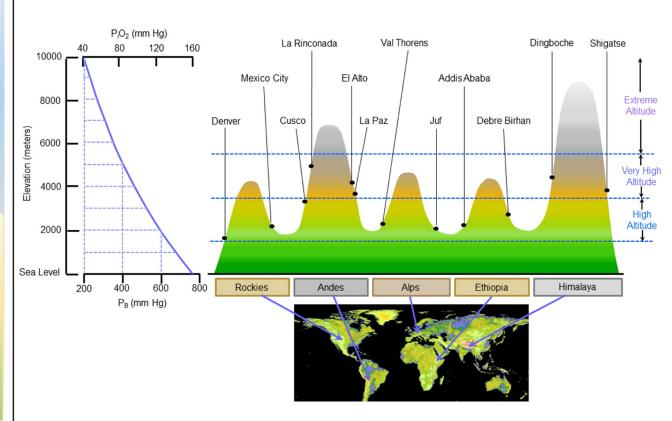
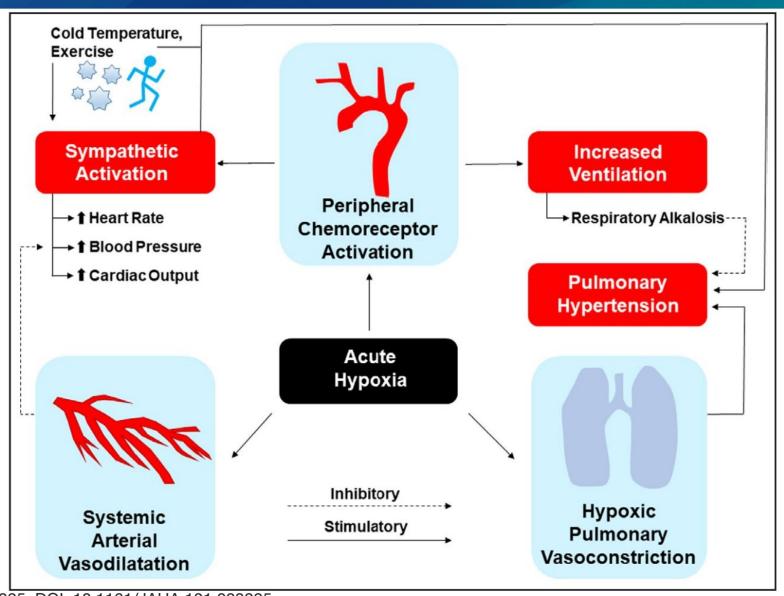
The Cardiovascular System at Altitude

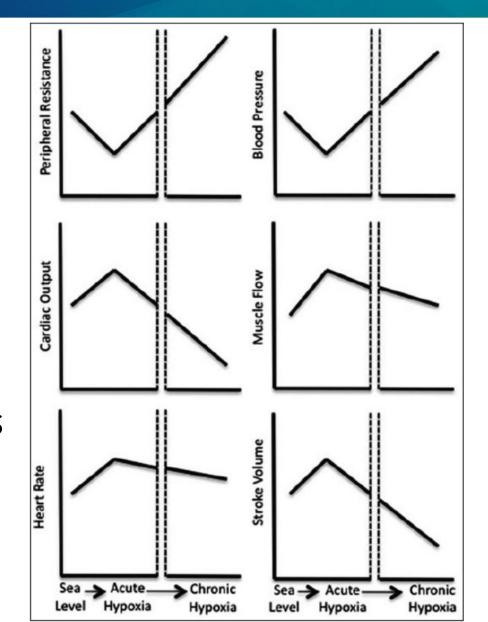

Robert Shapiro, MD, FACC Boulder Heart 303-625-9353

What Qualifies as High Altitude?


Altitude Zone, Height	Popular USA Destinations	Reduction in VO₂Max	Sea-level FIO ₂ Equivalent
Extreme Altitude: ≥5,500 m, 16400 ft	Denali Summit, AK: 6,190 m	47%	~0.09
	Mount Whitney, CA: 4,421 m	29%	~0.12
High Altitude: 3,000 m, 9840 ft	Mount Rainier, WA: 4,392 m	29%	~0.12
	Summit County, CO: 2,425 m	9%	~0.15
Moderate Altitude: 2,000 m, 6560 ft	Park City, UT: 2,134 m	6%	~0.16
	Lake Tahoe, CA: 1,901 m	4%	~0.16
Low Altitude: 500 m, 1640 ft	Denver, CO: 1,609 m	1%	~0.17
Sea-Level			

Globally, about 400 million people reside above 5000 ft.

Response to Lower Oxygen Levels

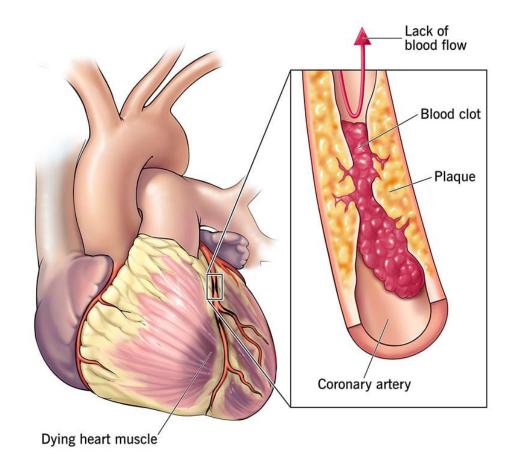


J Am Heart Assoc. 2021;10:e023225. DOI: 10.1161/JAHA.121.023225

Acute vs Chronic Effects

- Acute = minutes to hours
- Chronic = days to weeks
- Blood pressure drops initially, but goes up over time
- Heart rate increases initially, but goes down over time
- Cardiac output (flow by the heart) increases initially, but drops over time

Benefits of Living at Higher Altitude Boulder Community Health



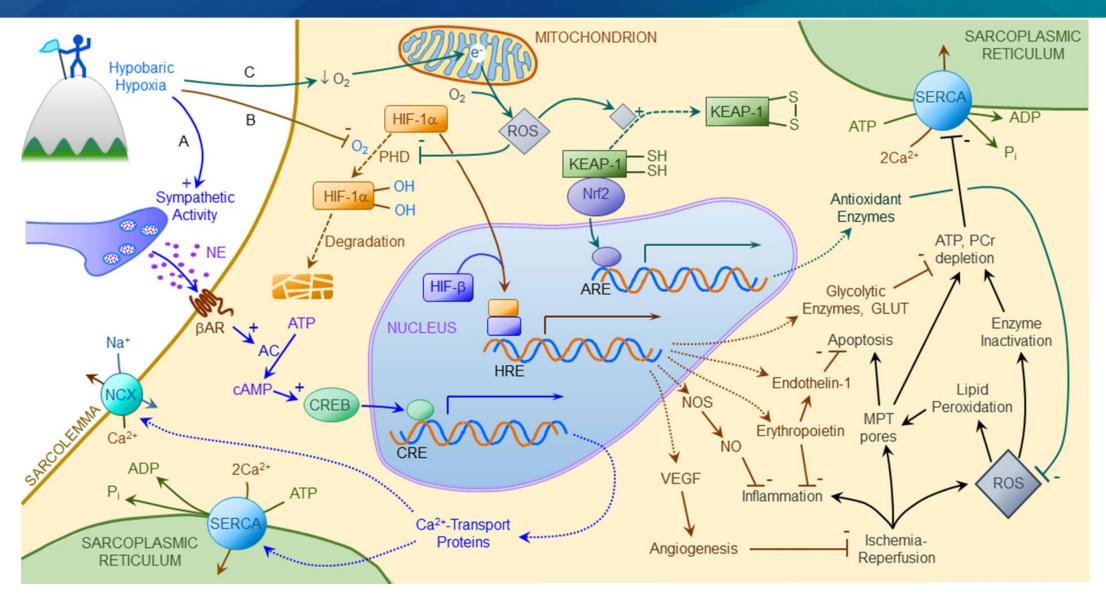
- Lower mortality from:
 - Cardiovascular diseases
 - Stroke
 - Cancer (esp. colon and lung cancer)
 - Alzheimer Disease
- Decreased rate of diabetes (in men) 16% reduction
- Possibly increased life expectancy at moderate altitude vs sea level difference may be negligible when you account for smoking and lung disease)
 - 1.2-3.6 years in men
 - 0.5-2.5 years in women
- However, there is a possibility that these effects are related to socioeconomic factors and/or lifestyle behaviors

Benefits of Living at Higher Altitude Boulder Community Health

Heart Attack

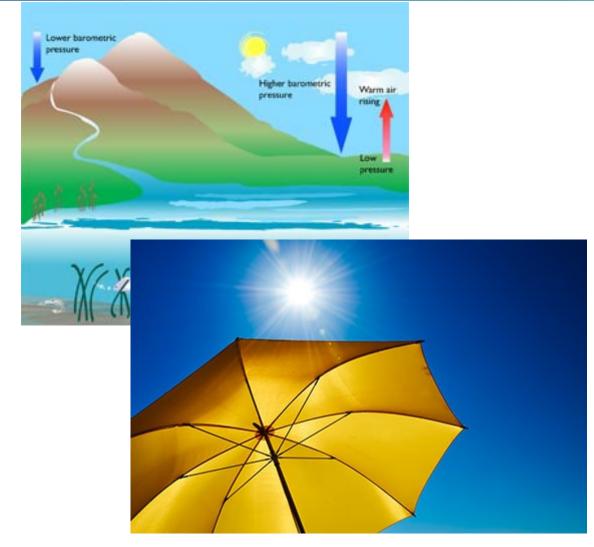
 Ischemic heart disease mortality for people at >1,000m was 4-14 per 10,000 people lower when compared to people within 100m of sea level.

Benefits of Living at Higher Altitude Boulder Community Health

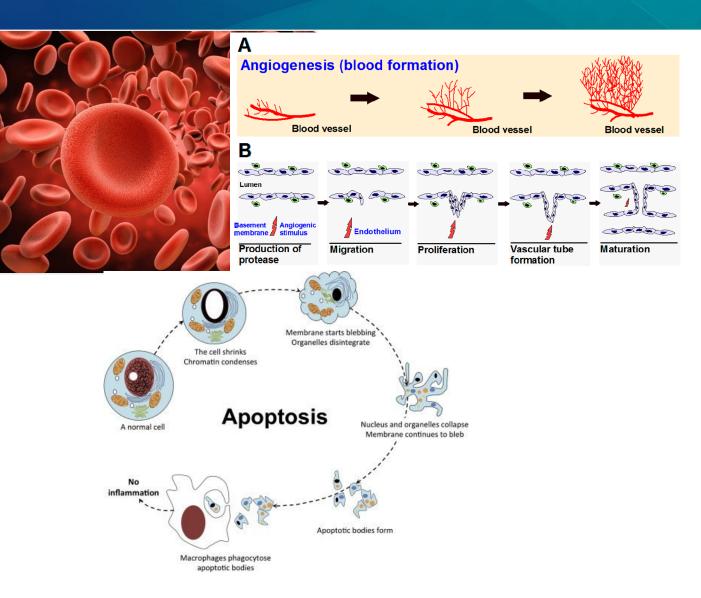


- Data has shown 20% lower mortality risk for subjects with an exercise capacity of 5-7 metabolic equivalents (METs) compared to those achieving below 5 METs.
- Living at higher elevation may promote relatively high fitness level since 5-7 METs are required even for slow uphill walking.

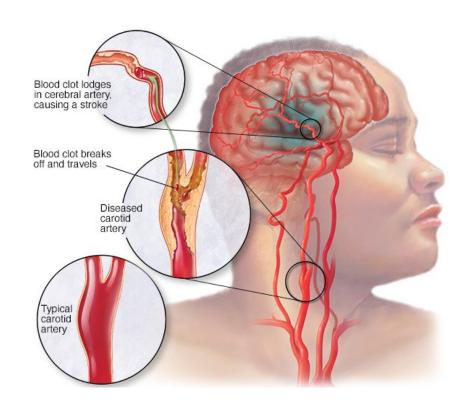
Cardioprotective Gene Expression Boulder Community Health



Gene-Environment Interactions


- Lower barometric pressure and resultant lower partial pressure of oxygen
- Increased ultraviolet and ionizing radiation
 - Improved synthesis of Vitamin D
 - Reduced clot formation
 - Lower parathyroid hormone
 - Lower insulin resistance
 - Decreased diabetes, hypertension, inflammation

Gene-Environment Interactions

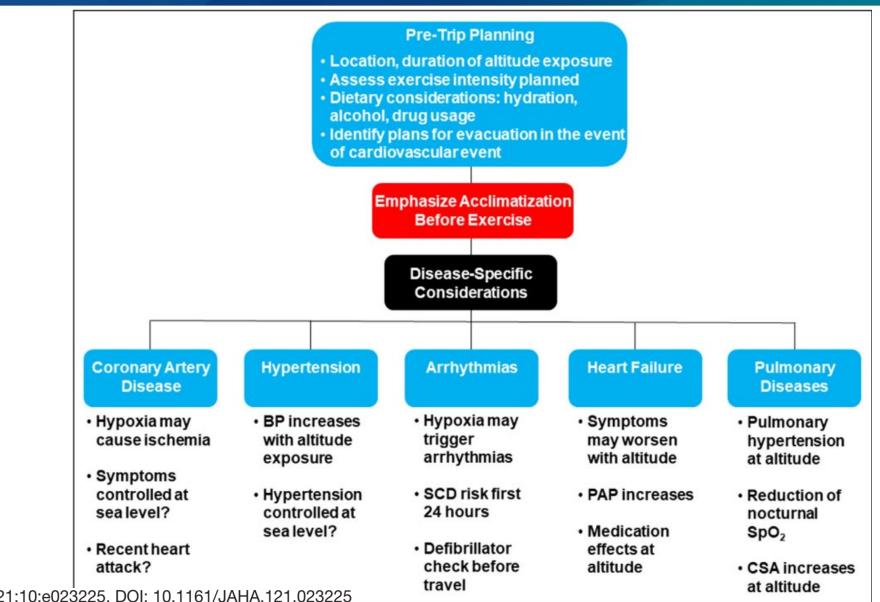

- Hypoxia-inducible factor (HIF-1) pathways may reduce cardiovascular mortality (key regulator of multiple systems)
 - Forming new red blood cells (erythropoiesis)
 - Forming new blood vessels (angiogenesis)
 - Getting rid of sick cells (apoptosis)
 - Increased metabolism

Intermittent Hypoxic Stress

- Body adapts due to intermittent low oxygen stress
- Production of nitric oxide (NO) increased
 - Improves vasodilatation
- Pre-conditioning allows for protection against more severe and prolonged low oxygen events
 - Cardioprotective
 - Neuroprotective
 - Vasoprotective

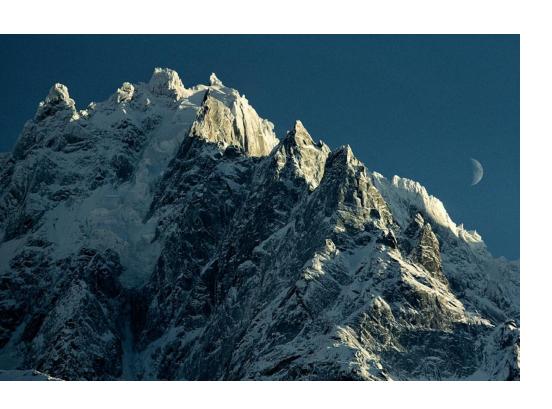
Detriments of Living at Higher Altitude #Boulder Community Health

- Higher mortality from:
 - COPD
 - Lower respiratory illnesses
- While higher altitude may be protective against development of some diseases, it could increase mortality when disease progresses.
- With chronic lung disease, higher altitude may exacerbate low blood oxygen levels and elevated blood pressure in the lungs (pulmonary hypertension).


Risks of Living at Higher Altitude

- Risk of Chronic Mountain Sickness (generally >3,000m)
 - Progressive loss of ventilatory rate
 - Low oxygen levels
 - Increased red blood cell counts
 - Results in high blood pressure in the lungs
 - Can lead to congestive heart failure
- Possible increased risk of heart rhythm issues

Considerations for Visitors

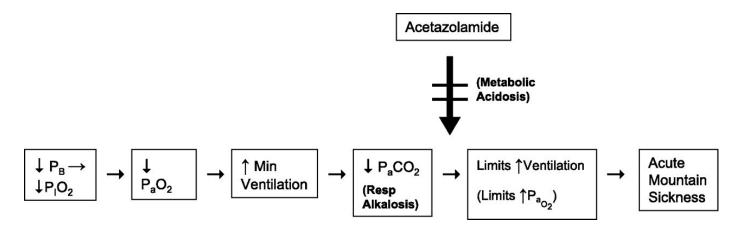


J Am Heart Assoc. 2021;10:e023225. DOI: 10.1161/JAHA.121.023225

Acclimatization

- Time to allow body to get used to higher altitude environment.
- Increased ventilation, oxygenation, and perfusion to the brain.
- Ideally 5 days before strenuous exertion at altitude.
- Data that even one day of acclimatization results in a 6-fold decrease in the risk of sudden cardiac death in the mountains.

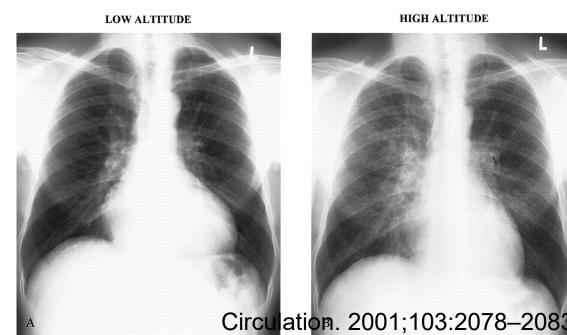
Things to Monitor - AMS



- Acute Mountain Sickness (AMS)
 - Nausea, lack of appetite, vomiting, dizziness, fatigue
 - Increased risk with increased age
 - Usually resolves within first few days
 - Can progress to life-threatening diseases in rare cases

Things to Monitor - AMS

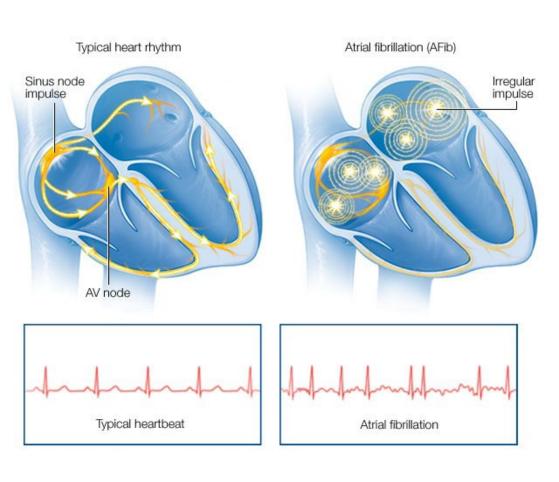
- Acute Mountain Sickness (AMS)
 - Symptoms are sometimes treated with a diuretic (acetazolamide)
 - Can discuss possible prophylactic use of acetazolamide with physician prior to high altitude activities in at risk individuals



Things to Monitor - HAPE

- High-altitude pulmonary edema (HAPE)
 - Usually within 4 days of travel to high elevation
 - Can have rapid onset
 - Symptoms of fluid on the lungs (shortness of breath, fatigue, cough, low oxygen levels)
 - Requires descent to lower elevation
 - Supplemental oxygen
 - May require medications to treat
 - Avoidance of activity
 - Can carry 50% mortality untreated

Things to Monitor - Hypertension


Table 3 Clinical and therapeutic recommendations for hypertensive patients planning to go to high altitude

Patients	Recommendations	Class of evidence	Level of evidence	Re
Patients with moderate—severe hypertension and hypertensive patients with moderate—high car- diovascular risk	Check BP values before and during HA sojourn.	lla	В	7,8,3
Well-controlled hypertensive patients/mild hypertensive patients	May reach very HA (>4000 m) with adequate medical therapy.	I	С	8,35,
Uncontrolled/severe hypertensive patients	Avoid HA exposure in order to prevent risk of organ damage.	I	С	36S
Therapy				
Angiotensin II receptor blockade (tested with Telmisartan) lowers BP in healthy subjects up to 3400 m		1	В	35
Acetazolamide administration lowers BP at HA while improving SaO ₂ and mountain sickness symptoms		1	В	9
Combination of nifedipine/telmisartan effectively lowers BP in hypertensive patients at an alti-			В	36
Selective beta-1 adrenergic recep	nduced BP increase and preserves nocturnal BP dipping. stors blockade is associated with a lesser impairment of pared with the administration of non-selective beta-blockers	I	С	13
When moderate-severe hypertensi	ve patients and hypertensive patients at moderate—high to HA, adequate modification of their antihypertensive	lla	С	

- Blood pressure may worsen at high altitude
 - Increased sympathetic tone
 - Orthostatic symptoms may worsen
- Medications targeting renin-angiotensinaldosterone system may be less effective
- Beta-blockers may be more effective

Things to Monitor – Atrial Fibrillation Boulder Community Health

- Heart rate increases with altitude.
- Those with heart rhythm issues may have worsening.
- May require adjusting medications to maintain heart rate control.
- Patients may also have recurrence of heart rhythm issues at higher elevations, which may require coming back down to lower elevations for management.

- Adults with coronary disease may have onset of symptoms at lower levels of exertion.
- A subset of patients may benefit from stress test at lower elevation prior to attempting to exert at higher elevation to guide medical therapy.
- May be increased risk of sudden cardiac death at higher altitude.
- Avoid traveling to altitude shortly after coronary event.

- Dutch study looked at people who were at least 6 months out from revascularization for acute heart attack.
- Compared with healthy controls.
- Stress test at sea level and at 4,200m after 10-day acclimatization.
- Both patients and healthy controls had similar decrease in exercise capacity and max heart rate.
- Suggests that patients with coronary disease can tolerate exercise at high altitude.

- However, adaptations to higher altitude may increase risk of heart attack
- Paradoxical vasoconstriction in arteries with atherosclerosis
- Low oxygen in air leads body to increase concentration of red blood cells relative to overall blood volume
- Benefit is increased oxygen carrying capacity
 - Blood doping for athletes
- Risk is that blood becomes thicker and may clot more easily
- Platelet activation may also occur

Mountaineer Conrad Anker after heart attack while climbing in Nepal.

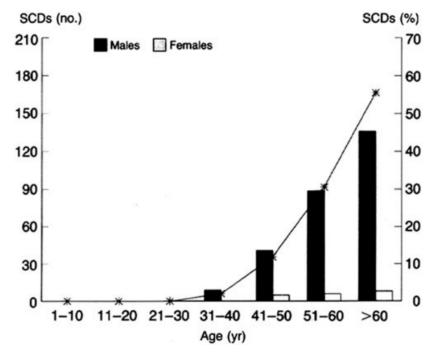
ROOM AIR

n = 12, 50 7 yrs Evaluation for chest pain.

NORMAL CORONARY VESSELS

CORONARY **ATHEROSCLEROSIS**

 $(FIO2 = 0.10 \sim 5,500m)$

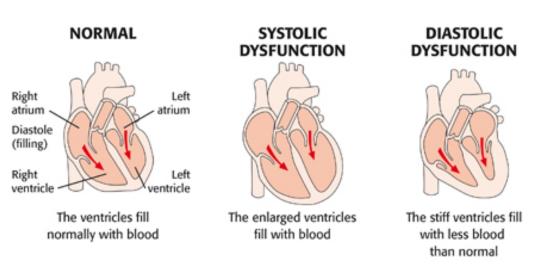

 Example of coronary arteries demonstrating paradoxical vasoconstriction

Zadeh Atherosclerosis 2008

- Cardiac events more likely to affect older, unfit men.
- Usually within the first few days of altitude exposure.
- If an event occurs far from advanced medical care, outcome may be poor.

FIG. 5. Data from Burtscher et al. 1993 showing the relationship between number of sudden cardiac deaths (SCDs) in the Austrian Alps (*left axis*, *solid bars* for males and females), and the % of the total number of SCDs (right axis, solid line) as a function of 10 year age groupings (horizontal axis). Figure reproduced with permission from Burtscher et al., 1993.

Recommendation for ischaemic patients ascending to high altitude


Patient risk class	Recommendations		
General recommendations for	Patients should continue pre-existing medications at HA.		
all cardiovascular patients	All therapy changes, especially dual anti-antiplatelet		
an car dio rascalar patients	therapy after drug-eluting stent implantation, must be		
	discussed with a doctor before enacting. Individuals		
	who do not engage in physical exertion at low altitude		
	should not engage in physical activity at HA.		
	Acetazolamide administration seems to reduce the risk		
	of subendocardial ischaemia at HA in healthy subjects,		
	and thus use of acetazolamide for AMS prevention		
	might be helpful. No data are available, however, in		
	patients with CAD.		
After AMI/CABG	Patients should wait at least 6 months after uncompli-		
	cated ACS episode as well as after revascularization		
	before HA exposure.		
After stenting	Patients should wait at least 6-12 months after coronary		
	stenting before HA exposure.		
Low risk (CCS 0-I)	May safely ascend to HA, up to 4200 m asl, and practice		
	light-to-moderate physical exertion.		
Moderate risk CAD (CCS II-III)	May carefully ascend up to 2500 m, but physical exercise		
	heavier than light is contraindicated.		
High risk (CCS IV)	Should not ascend to HA.		

 European Guidelines (we do not have specific altitude guidelines from the American College of Cardiology)

Things to Monitor – Heart Failure

- More difficulty tolerating activity at altitude.
- Elevated HR, increased BP, increased lung fluid content, and decreased heart function can all be problematic in setting of known heart failure.
- Medications for heart failure may also inhibit some compensatory mechanisms for dealing with altitude.
- Diuretics may increase the risk of volume depletion.

Things to Monitor – Heart Failure

Table I Recommendations for heart failure patients going to high altitude

HF severity level	Recommendations
All HF patients	Carefully evaluate HF co-morbidities (e.g. pulmonary
	hypertension, anaemia, sleep apnoea)
	Carefully evaluate HF drugs (in particular diuretics,
	potassium supplementation, and β blockers).
	Whenever possible, $\beta 1$ selective should be
	preferred to non-selective beta-blockers
	Slow ascent is recommended. Although we do not have
	precise data on advisable ascent rate, it is prudent not
	to exceed that recommended for healthy travellers
	(300-500 m/day when above 2500 m)
Stable NYHA I-II patients	May safely reach high altitude up to 3500 m
	Once at altitude, not heavier than moderate physical
	activity is recommended
Stable NYHA III patients	May safely reach high altitude up to 3000 m, if needed
	Once at altitude, not heavier than light physical activity
	is recommended
Unstable/NYHA IV patients	Avoid high altitude exposure

 European Guidelines (we do not have specific altitude guidelines from the American College of Cardiology)

Key Points

- Living at altitude may be quite beneficial to your cardiovascular health
- Some of the benefit may derive from healthy behaviors, so keep those up
 - Exercise routinely
 - Control weight

Key Points

- Take care when you have visitors from low altitude
 - Older friends and family
 - Those with pre-existing conditions
- Encourage good hydration
- Avoid excessive alcohol
- Plan on time for acclimatization for visitors before embarking on heavy exertion and moving to higher altitude

Key Points

- Monitor for signs or symptoms suggestive of issues related to altitude.
- Have a low threshold to move friends and family (or yourself) back to lower elevation if they are experiencing significant symptoms.
- Have a plan in place for emergency treatment, and plan for the fact that emergency evacuation can be difficult from the backcountry.
- Take friends and family to the hospital for significant symptoms.
 - It is not uncommon for us to see patients from out of state presenting with heart attack, heart failure, loss of consciousness, heart rhythm issues, etc.
 - Keep in mind that adverse effects of altitude can happen to anyone.

Thank you!

The Cardiovascular System at Altitude

Robert Shapiro, MD, FACC Boulder Heart 303-625-9353

