Low Dose Radiation Therapy for Benign Conditions

Dario Pasalic, MD Patrick Richard, MD, MPH, DipABLM Rocky Mountain Cancer Centers 720-764-9276

Musculoskeletal Radiation Therapy Boulder Community Health

Update on Evidence & Radiation Treatment Indications for Non-Malignant ("Benign") Inflammatory Musculoskeletal Conditions Such as Osteoarthritis, Plantar Fibromatosis & Palmar Fibromatosis

Disclosures: None

Dario Pasalic, MD

- Mayo Clinic School of Medicine
- Memorial Sloan-Kettering Cancer Center Transitional Year
 - MD Anderson Cancer Center Residency

Patrick Richard, MD, MPH, DipABLM

- Tulane University School of Medicine
- Tulane University Public Health Masters
- University of Washington Residency
- Univ of Michigan Integrative Oncology Scholars Program
 - Board Certified Lifestyle Medicine Physician

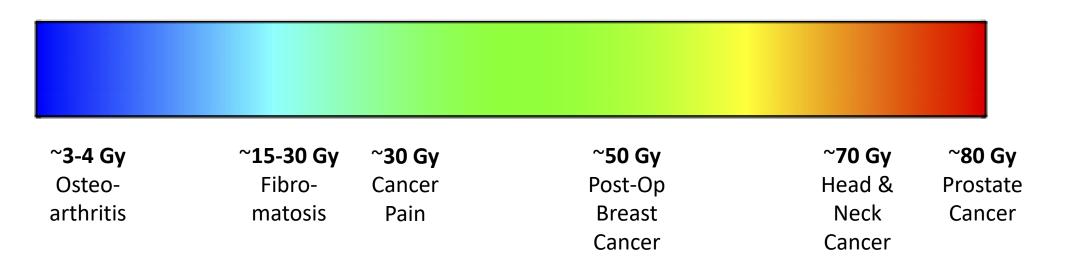
Outline

- Overview of radiation therapy
- Overview of musculoskeletal conditions
- Summary of data
- Radiation therapy details
- Radiation capabilities at Rocky Mountain Cancer Centers

Objectives

- Identify non-malignant conditions treated with radiation therapy
- Diagnose plantar and palmar fibromatosis
- Identify wherein low-dose radiation therapy can be used in osteoarthritis treatment algorithm
- Explain the toxicity / side effects associated with low-dose radiation therapy

Overview of Radiation Therapy: Non-Malignant Conditions


- Meningiomas
- Schwannomas
- Paragangliomas
- Arteriovenous malformations
- Trigeminal neuralgia
- Cavernomas and hemangiomas
- Refractory ventricular tachycardia
- Hidradenitis suppurativa
- Graves Ophthalmopathy
- Keloids (prevention of disease occurrence/recurrence)
- Heterotopic ossification (prevention of disease occurrence/recurrence)
- Gynecomastia secondary to hormone therapy for prostate cancer
- Inflammatory conditions (Dupuytren's contracture, Ledderhose disease, plantar fasciitis, osteoarthritis, tendinitis)

Overview of Radiation Therapy

- High doses of radiation to cure cancer
- Intermediate doses of radiation to mediate cancer-related pain
- Lower doses of radiation to mediate inflammation and fibromatosis

Overview of Radiation Therapy: Cancer-Related Pain

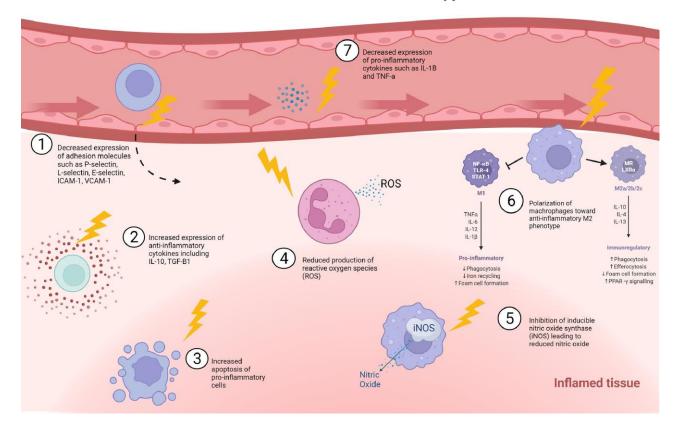
Intermediate doses of radiation to mediate **cancer-related pain** has been used for **decades** with **good results** (**Grade 1A** recommendation)

SUMMARY AND RECOMMENDATIONS

- Supportive care For all patients with painful bone metastases, supportive care should include adequate analgesia and the use of osteoclast inhibitors to enhance analgesia and reduce the risk of skeletal-related events (including the need for radiation or surgery to bone, pathologic fractures, spinal cord compression, and hypercalcemia of malignancy). (See 'Supportive care' above.)
- Single or limited number of painful metastases
- External beam RT For most patients with a single or limited number of areas of painful bone metastases, we recommend external beam radiation therapy (EBRT) (Grade 1A). (See 'External beam radiation therapy' above.)
 - For most patients, we suggest using a single fraction of 8 Gy to the involved area (**Grade 2A**). This approach provides equal palliation with improved patient convenience and cost-effectiveness compared with fractionated schedules, although retreatment is needed more frequently. (See 'Single-dose versus fractionated treatment' above.)
 - For patients with a relatively long life expectancy (six months or longer), a fractionated regimen (such as 30 Gy in 10 fractions or 20 Gy in five fractions) is a reasonable alternative.
 - A transient worsening of pain ("pain flare") occurs in approximately 30 to 40 percent of patients undergoing RT for a painful bone metastasis. Treatment with dexamethasone may reduce the frequency of pain flare. (See 'Time course of relief and incidence of pain flare' above.)
- Indications for SBRT In our view, stereotactic body RT (SBRT) should be reserved mostly for patients who have persistent or recurrent bone pain after a standard course of EBRT. This view is in keeping with evidence-based guidelines on palliative RT for bone metastases from the American Society for Radiation Oncology.
- One setting in which SBRT may be preferred over EBRT is in the definitive treatment of patients with symptomatic bone metastases from relatively radioresistant neoplasms (eg., renal cell cancer, melanoma, sarcoma), especially in the setting of vertebral metastases with epidural extension but no high-grade epidural spinal cord compression. For patients with oligometastatic bone disease, a controlled primary site, and a long estimated life expectancy, SBRT is also a reasonable approach. (See 'Stereotactic radiation therapy' above.)
- Need for surgery Surgical consultation for fixation should be obtained prior to the institution of RT for high-risk bone metastases involving the long bones or other weight-bearing bones to treat or prevent a pathologic fracture. In general, we request orthopedic consultation for patients with a Mirels score of 8 or higher (

 | table 1). (See 'Need for surgery' above and "Management of complete and impending pathologic fractures in patients with metastatic bone disease, multiple myeloma, and lymphoma", section on 'Management principles'.)
- Persistent or recurrent pain Options for patients who have persistent or recurrent bone pain following treatment with EBRT include repeat irradiation with fractionated treatment (especially if single-fraction EBRT was initially used), SBRT, image-guided local thermal ablation, kyphoplasty/vertebroplasty for vertebral compression fractures, or radiopharmaceuticals. (See 'Treatment of recurrent or persistent pain' above.)

Reirradiation may be indicated if there is an incomplete response to initial treatment or if severe pain recurs and the patient's overall condition permits. Clinical trials data suggest that acceptable regimens include a single fraction of 8 Gy or a brief fractionated regimen of 20 Gy, although the latter can be associated with higher acute toxicity. For selected patients with a good performance status and recurrence in the spine, SBRT is another option, where available. (See 'Stereotactic radiation therapy' above and 'Safety and efficacy of reirradiation' above.)

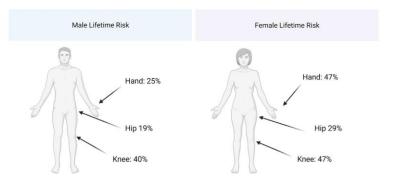

Overview of Radiation Therapy: Low-Dose

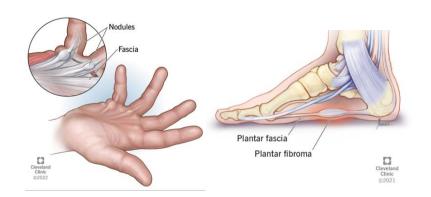
Lower doses of radiation to mediate inflammation and

fibromatosis

Radiobiologic Mechanisms of Anti-Inflammatory Effect of Low-Dose Radiotherapy

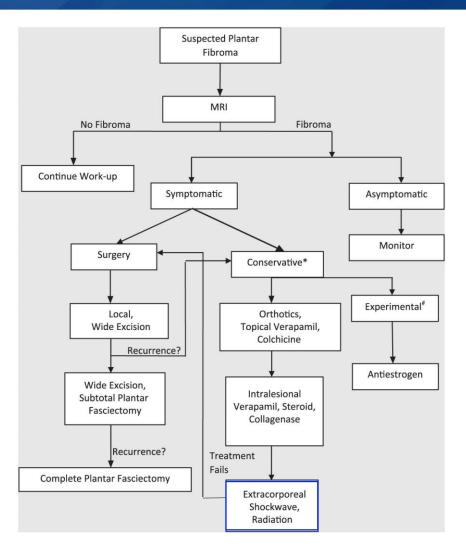
Radiation-Induced Fatal Tumor Risk Boulder Community Health

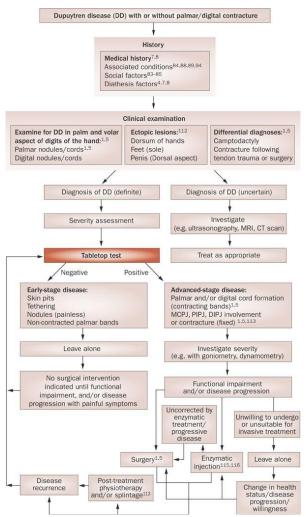

- Lifetime risk for an induced fatal tumor in patients receiving low-dose radiation therapy to the knee with total dose of 6 Gy
 - At age 25: 2 in 1,000 (.2%)
 - At age **50**: 0.7 in 1,000 (**.07%**)
 - At age 70: 0.3 in 1,000 (.03%)
- Risk is related to radiation dose, anatomic location, and time interval. Important to consider age, gender, anatomic location (i.e. shoulder and hip may be higher risk due to surrounding nearby organs whereas knee/hands/elbow may be lower risk) and other factors when evaluating patients for the risks / benefits of low-dose radiation therapy.
- No known reported cases of secondary malignancy from treatment of osteoarthritis with low-dose radiation therapy.


Overview of Musculoskeletal Conditions

- Osteoarthritis
 - 1 in 7 adults in US (~32.5 million)
 - Knee > hip > hands
 - 2nd most costly health condition in US
- Plantar fibromatosis (Ledderhose disease)
 - Incidence of ~200,000 in US
 - Plantar fasciitis affects ~1 in 10 people in the US
- Palmar fibromatosis (Dupuytren's contracture)
 - Incidence of 3 to 140 per 10,000 adults in US (~70,000 – 3.3 million)

Lifetime Risk of Osteoarthritis by Gender

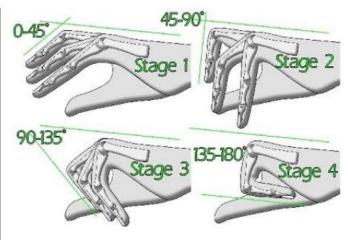




Plantar & Palmar Fibromatosis Treatment Algorithm

Treatment	Mechanism of Action	Results			
Offloading pads	Offloads fibroma with use of orthotics and cut-outs	Does not affect size or progression of fibroma. Provides symptomatic relief			
Radiation	Ionizing radiation disrupts TGF-β produced by myofibroblasts during proliferation phase	Requires multiple sessions of radiation during several week periods. 50% of patients report decrease in size of lesion			
Extracorporeal shock wave	Exact mechanism of action unknown, possibly directly damages lesion resulting in removal by macrophages	Pain reduction and softening of lesions have been reported as early as 2 weeks after initiation of treatment			
Steroids	Decreases expression of VCAM-1 and alters production of TGF-β and bFGF	Reduces size and pain of lesion, however, lesion can reoccur after several years			
Anti-estrogen	Decreases contraction rates of myofibroblasts	Currently there are no in vivo studies evaluating its efficacy			
Verapamil	Inhibits collagen production and increases collagenase activity	No reported studies published in plantar fibromas but has been shown to decrease plaque size in Peyronie's disease			
Collagenase	Contains 2 types of collagenase AUX-1 and AUX-2, which degrade collagen	Has been shown to decrease contractions in Peyronie's and Duyuptren's. In one case study in plantar fibromas did not show improve of lesion size			
Colchicine Inhibits microtubule polymerization by binding to tubulin		Has not been proven effective, more studies are needed to evaluate efficacy ¹⁸⁻²⁰			

Radiotherapy administered in the early stages of DD can prevent disease progression. 117,118 In a long-term follow-up of radiotherapy applied to early-stage DD (no extension deficit, or total flexion deformity of 1–5°), 70–87% of cases remained stable and showed no progression after 13 years. 118



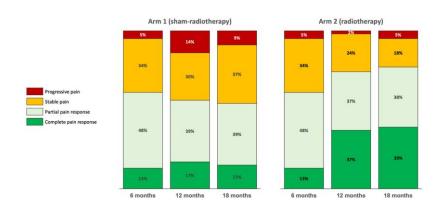
Plantar & Palmar Fibromatosis Classification

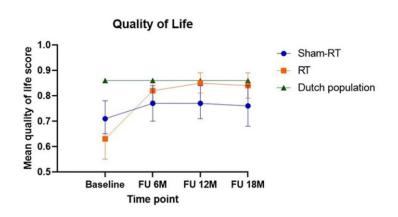
Early stagewhere XRT is
most beneficial

Table 1 Original staging of Dupuytren disease by Tubiana				
Stage	Deformity			
0	No lesion			
N	Palmar nodule without presence of contracture			
1	TFD between 0° and 45°			
2	TFD between 45° and 90°			
3	TFD between 90° and 135°			
4	TFD >135°			

Table Top Test Patient can't flatten hand

Presume Dupuytren's disease when a patient with a hand nodule or cord is unable to flatten the palm of the hand against a table surface.


Tumor	Grade Description
I	Focal disease isolated to a small area on the medial and/or central aspect of the fascia No adherence to the skin No deep extension to the flexor sheath
II	Multifocal disease, with or without proximal or distal extension No adherence to the skin No deep extension to the flexor sheath
III	Multifocal disease, with or without proximal or distal extension Either adherence to the skin or deep extension to the flexor sheath
IV	Multifocal disease, with or without proximal or distal extension Adherence to the skin and deep extension to the flexor sheath


Plantar & Palmar Fibromatosis Data Boulder Community Health

LedRad

- Phase 3 randomized, multicenter, double-blind for plantar fibromatosis
- Primary endpoint: Pain reduction at 12mo (complete and/or partial response of 35%)
- Secondary endpoint: Pain reduction at 6 & 18 months; quality of life; walking ability; toxicity
- n=84 randomized to XRT (two courses of 15 Gy, separated by 10 weeks) vs sham-XRT (sound-recording of the machine mimicking treatment)
- Toxicity: ↑ acute dermatitis with XRT (33% vs 18%)

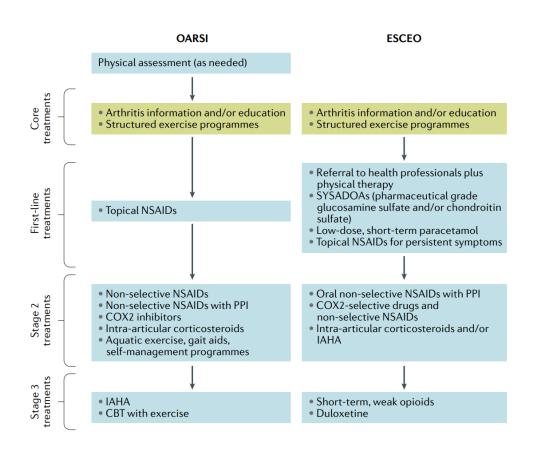
↓ 12mo mean pain score (2.5 vs 3.6; p=0.03) with XRT Cumulative pain response 74% with XRT (vs 56% placebo)

↑ quality of life with XRT (p<0.001)

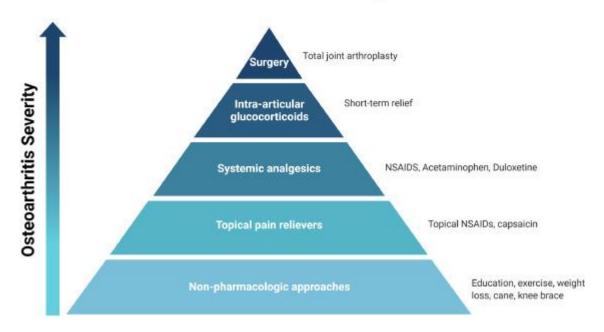
Plantar & Palmar Fibromatosis Data Boulder Community Health

Seegenschmiedt Study

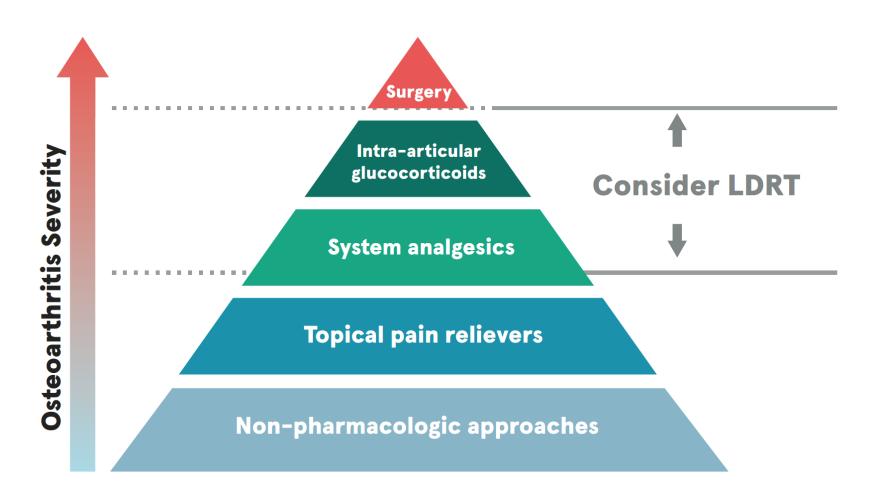
- Phase 3 randomized, single center for palmar fibromatosis
- Primary endpoint: Clinical progression (nodules/cords) and necessity of salvage surgery
- Randomized to observation (no XRT) vs XRT (21 Gy in 7 fractions) vs XRT (two courses of 15 Gy, separated by 8 weeks)
- Tubiana classification: N=nodules/cords without extension deficit (65.5%), N/I=≤10° deficit (17%), I=11-45° deficit (15%), II=46-90° deficit (2.5%)
- Initial study n=129 then expanded to total of n=489 (mean follow-up 8.5 years, range 5-13 years)


• Progression:

- Clinical and surgery: 62% and 30% (observation) vs 24% and 12% (XRT 21 Gy) vs 19.5% and 8% (XRT 15 Gy two course) (p<0.0001)
- Toxicity with XRT:
 - Acute grade 1 of 26.5% and acute grade 2 of 2.5%
 - Late grade 1 of 14%
 - No in-field secondary cancers noted at long-term follow-up



Osteoarthritis Treatment Algorithm Boulder Community Health


Osteoarthritis Management

Osteoarthritis Treatment Algorithm Boulder Community Health

Trends Over Time

- First osteoarthritis patient treated in US was in 1906.
- Common condition treated until 1980s due to improved pharmacologic treatment options and negative trial data.
- Physician survey in 1998 demonstrated <10% in US using radiation therapy for osteoarthritis compared to >85% in Europe.

Negative randomized trials in 1970 and 1975

- \times Mixed types of arthritis, minority had osteoarthritis (n=125/399 and n=40/104)
 - x Not low-dose radiation therapy (≥100 cGy/fraction) as currently used
 - x Use of non-modern radiation techniques and approaches

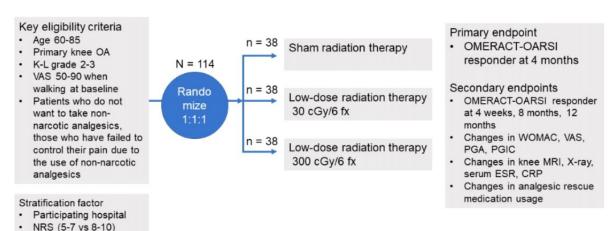
Germany Society of Radiation Therapy Oncology: Level of Recommendation

- Germany Cooperative Group in Radiation Therapy for Benign Disease (GCG-BD) review decades
 of German clinical experience using radiation for non-malignant disorders.
- Update in 2018 included levels of recommendation for different treatment sites based on current data.
- Overall data demonstrated symptomatic pain relief 60-90% with essentially no side effects.

Table 3 Overview of indications and DEGRO level of recommendations for LDRT for musculoskeletal disease

Suggested criteria for treatment with LDRT for	or OA			
Appropriate after the exhaustion of other medic replacement (if more conservative treatment is	ral interventions or before more aggressive interventional treatments such as joint s desired)			
Older than age 40				
No known contraindications to radiation (pregr	nancy, active connective tissue disorder)			
2018 DEGRO level of recommendation				
Knee OA	Level recommendation B			
Hip OA	Level recommendation C			
Hand OA	Level recommendation C			
Ankle OA	No level recommendation given			
Shoulder OA Level recommendation C				
Plantar fasciitis	Level recommendation A			
Elbow syndrome	Level recommendation B			
Abbreviations: DEGRO = German Society of Radiat	tion Therapy and Oncology; LDRT = low-dose radiation therapy; OA = osteoarthritis.			

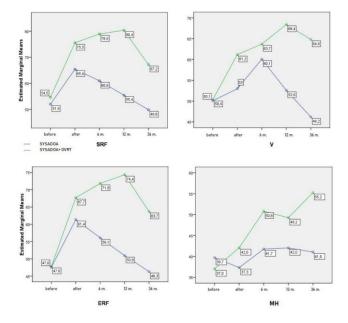
Reference	Study design (sample size)	Site	Total dose/dose per fraction (percentage of joints)	Fractionation schedule	Reirradiated (time after initial treatment)	Pain scoring	Follow-up	Outcome	Treatment device
Alvarez et al (2021) ⁸⁸	Prospective (n = 100)	Hand	6.0 Gy/1.0 Gy (83%); 3.0 Gy/0.5 Gy (17%)	3 fractions per week for 2 wk	50.4% (median 12 wk)	VAS	10.5 mo (median)	94% response at 12 mo	Linac
Donaubauer et al (2021) ⁵³	Prospective (n = 125)	Multijoint	3.0 Gy/0.5 Gy	6 fractions over 3 wk	61.6% (3 mo)	VAS	6 mo	Planned interim analysis: reduction in mean VAS from 6.5-3.8 at 6 mo	Orthovoltage
Rogers et al (2020) ⁸⁹	Prospective (n = 99)	Fingers	4.0 Gy/0.5 Gy	Twice weekly for 4 wk	81.8% (2-12 mo)	VAS	12 mo	Reduction in VAS during activity by 3.0 (median) at 12 mo	Orthovoltage
Koc et al (2019) ⁹⁰	Prospective (n = 16)	Knee and hip	6.0 Gy/1.0 Gy	6 fractions given over 2 wk	0%	NRS	52 wk	50% response rate at 6 wk; 25% response rate at 52 wk	Linac
Micke et al (2018) ⁶⁶	Prospective (n = 703)	Multijoint	6.0 Gy/0.5 Gy (84.8%); 6.0 Gy/1.0 Gy (15.2%)	Not reported	7.3% (3 mo)	VAS and VPS	33 mo (median)	Reduction in mean VAS from 7.0-4.5 at the end of RT; 37.6% response rate at end of RT; 58.4% response rate at 33 mo	Linac orthovoltage
Micke et al (2017) ⁹¹	Prospective (n = 166)	Multijoint	6.0 Gy/0.5 Gy (77.8%); 6.0 Gy/1.0 Gy (22.2%)	Not reported	8.4% (3 mo)	VAS and VPS	29 mo (median)	Reduction in mean VAS from 6.38- 4.49 at the end of RT; 37.3% response at end of RT; 49.6% response at 29 mo	Linac orthovoltage

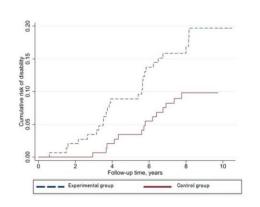

Review of several studies (>1,000 patients), only 1 patient reported mild skin erythema.

Kim LoRD-KNeA Study

- Randomized, multi-institutional trial sham XRT vs 0.3 Gy/6 fractions vs 3 Gy/6 fractions
- Osteoarthritis of the knee (n=114) based on Kellgren-Lawrence criteria
- No repeat course of XRT allowed
- Primary endpoint of response rate at 4 months based on the Outcome Measures in Rheumatology-Osteoarthritis Research Society International (OSMERACT-OARSI) scale

Responder rate at 4 months


- ↓ in pain of 70% in 3 Gy arm vs 42% in sham arm (p=0.014); ↓ in pain of 58% in 0.3 Gy arm (p=0.157)
- Western Ontario and McMaster
 Universities Osteoarthritis (WOMAC)
 clinically meaningful improvement in pain
 index noted more frequently in 3 Gy arm
 (57%) vs sham arm (31%; p=0.024)



Makarova Study

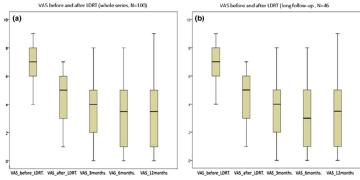
- Randomized, multi-institutional trial of glucosamine + chondroitin vs glucosamine + chondroitin + low-dose radiation
- Osteoarthritis of the knee (n=292) based on Altman and Kellgren-Lawrence criteria (including MRI)
- Radiation given at 0.45 Gy/fraction for total dose of 4.5 Gy (total 10 fractions)
- Clinical response using the SF-36 quality-of-life scale, visual analog scale, & radiographic imaging

↑ Quality of life
with XRT at 1-3 years
(social role function,
vitality, emotional
role function, mental
health)

↓ Cumulative disability with XRT (p=0.030)

↓ Knee arthroplasty (4% vs 8%)

MRI findings with improved cartilage thickness, less bone marrow edema, less articular surface thinning with XRT

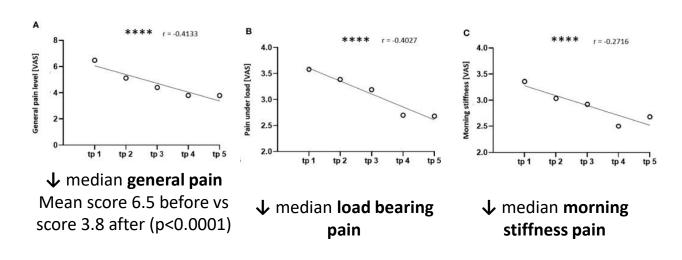


Alvarez Study

- Prospective study of patients with osteoarthritis of the hand(s)
- n=100 patients \rightarrow 57% PIP/DIP, 40% thumb, 2% radiocarpal, 1% MCP
- Radiation given in 6 fractions (0.5-1 Gy/fraction) every other day for total dose of 3-6
 Gy
- Second round of treatment in those who did not achieve pain relief after 8 weeks
- Response evaluated using visual analog scale for pain & von Pannewitz score for

joint functionality

- Median follow-up of 10.5 months (7.6-12.5)
 - 94% reported ↓ in pain after 3 m/o, 6 m/o, and 12 m/o (p<0.001)
 - Median pain score of 8 (range: 3-10) before →
 Median pain score of 5 (range: 1-10) after
 - 70% reported ↑ functionality
 - 63% required second course due to inadequate initial response
 - 0 acute or late complications


Median pain score at 3 m/o, 6 m/o, & 12 m/o of 4 (range: 0-9), 3 (range: 0-9), & 3.5 (range: 0-9), respectively (p<0.001)

Donaubauer Study

- Prospective study IMMO-LDRT01 evaluating immunological mechanisms of low-dose radiation
- Inflammatory condition (i.e. osteoarthritis, tendinitis) of any body site
- Radiation given in 6 fractions (0.5 Gy/fraction) over three weeks to total dose of 3 Gy
- Second round of treatment allowed for patients who did not achieve pain relief
- Clinical response evaluated using visual analog scale for pain
- Interim analysis of first 125 patients (planned n=250, still accruing)

- Ongoing IMMO-LDRT01 Prospective Clinical Trial (Germany)
- Ongoing RAGOCO Randomized Clinical Trial (Spain)
- Ongoing LoRD-KNeA Randomized Clinical Trial (Korea)

Other Institutions

- Cleveland Clinic
- City of Hope
- · UCLA
- University of Pennsylvania
- University of Pittsburgh
- Banner Health

Democracy Dies in Darkness

Low-dose X-ray treatment is being used for arthritis, plantar fasciitis and other benign conditions

Doctors who use it say the treatment is effective and the low dosage means little radiation exposure

August 3, 2025

By Caitlin Carlson

https://www.washingtonpost.com/health/2025/08/03/low-dose-radiation-therapy-ldrt-arthritis/

Cleveland Clinic

https://consultqd.clevelandclinic.org > low-dose-radiatio...

Low-Dose Radiation Therapy Reemerging for Osteoarthritis

Nov 7, 2023 — Cleveland Clinic radiation oncologists have started a low-dose radiation treatment program for patients with osteoarthritis.

City of Hope

https://www.cityofhope.org > departments-and-services :

Low-Dose Radiation Therapy for Osteoarthritis | City of Hope

UCLA Health

https://www.uclahealth.org > cancer > radonc > treatments

LDTR for Osteoarthritis - Radiation Oncology

Low-Dose Radiotherapy (LDRT) is a non-invasive, anti-inflammatory treatment that **uses very low doses of radiation** to reduce pain and improve joint function in ...

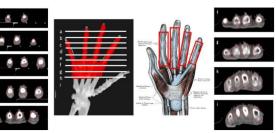
Penn Medicine

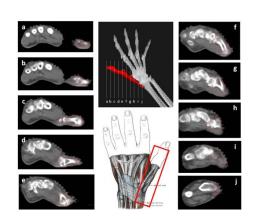
https://www.pennmedicine.org > december > low-dose-ra...


Low-dose radiation therapy for osteoarthritis

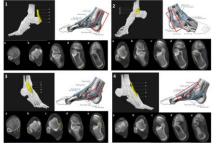
Dec 11, 2024 — **Low-dose radiation is an alternative treatment** for patients who haven't really responded to those more standard measures.

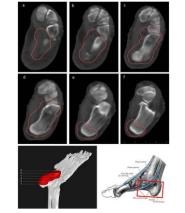
Radiation Therapy Details

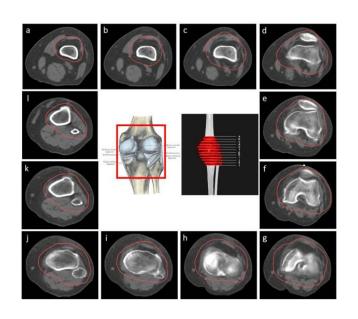




Radiation Therapy Details







Convenient Locations

Aurora Radiation

1700 S. Potomac St. Aurora, Colorado 80012

Street View

**** 303-418-7659

Littleton Radiation

22 W. Dry Creek Cir. Littleton, Colorado 80120

Street View

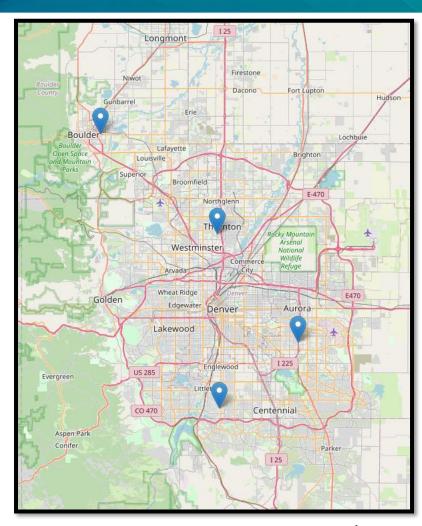
**** 303-730-4700

Boulder Radiation

4715 Arapahoe Ave. Boulder, Colorado 80303

Street View

**** 303-385-2068


Thornton Radiation

8820 Huron St. Thornton, Colorado 80260

Street View

**** 303-386-7622

Summary

- Low-dose radiation therapy can be used for a variety of inflammatory conditions
 including osteoarthritis, tendinitis, plantar fasciitis, palmar fibromatosis (Dupuytren's
 contracture), plantar fibromatosis (Ledderhose disease) based on phase III (randomized)
 and phase II (prospective) data.
- Treatments are minimally invasive (no injections or changes in patient routine), short (6-12 sessions depending on response), and convenient (20 min per session, 4 RMCC locations throughout metro area).
- Minimal side effects (1 patient, out of >1,000 reviewed, experienced skin erythema; risk of secondary malignancy <0.1% in appropriately selected patients).
- Consider patients who are in early-to-mid disease course (severe contracture for fibromatosis or severe bony erosion with osteoarthritis less likely to benefit from radiation and more likely need surgery) and age ≥50.

Patient Testimonial

- Linda Wanamaker
- Left knee arthritis treated in January
- Will share experience at Rocky Mountain Cancer Centers

Questions?

Low Dose Radiation Therapy for Benign Conditions

Dario Pasalic, MD Patrick Richard, MD, MPH, DipABLM Rocky Mountain Cancer Centers 720-764-9276

